Counting decomposable polynomials with integer coefficients
نویسندگان
چکیده
A polynomial over a ring is called decomposable if it composition of two nonlinear polynomials. In this paper, we obtain sharp lower and upper bounds for the number polynomials with integer coefficients fixed degree bounded height. Moreover, asymptotic formulas monic even degree. For example, sextic which are height at most H to $$(16\zeta (3)-5/4)H^3$$ as $$H \rightarrow \infty $$ .
منابع مشابه
Chebyshev Polynomials with Integer Coefficients
We study the asymptotic structure of polynomials with integer coef cients and smallest uniform norms on an interval of the real line Introducing methods of the weighted potential theory into this problem we improve the bounds for the multiplicities of some factors of the integer Chebyshev polynomials Introduction Let Pn C and Pn Z be the sets of algebraic polynomials of degree at most n respect...
متن کاملSmall Polynomials with Integer Coefficients
The primary goal of this paper is the study of polynomials with integer coefficients that minimize the sup norm on the set E. In particular, we consider the asymptotic behavior of these polynomials and of their zeros. Let Pn(C) and Pn(Z) be the classes of algebraic polynomials of degree at most n, respectively with complex and with integer coefficients. The problem of minimizing the uniform nor...
متن کاملOn D5-polynomials with integer coefficients
We give a family of D5-polynomials with integer coefficients whose splitting fields over Q are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.
متن کاملPolynomials with integer coefficients and their zeros
We study several related problems on polynomials with integer coefficients. This includes the integer Chebyshev problem, and the Schur problems on means of algebraic numbers. We also discuss interesting applications to the approximation by polynomials with integer coefficients, and to the growth of coefficients for polynomials with roots located in prescribed sets. The distribution of zeros for...
متن کاملFast, Parallel Algorithm for Multiplying Polynomials with Integer Coefficients
This paper aims to develop and analyze an effective parallel algorithm for multiplying polynomials and power series with integer coefficients. Such operations are of fundamental importance when generating parameters for public key cryptosystems, whereas their effective implementation translates directly into the speed of such algorithms in practical applications. The algorithm has been designed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monatshefte für Mathematik
سال: 2022
ISSN: ['0026-9255', '1436-5081']
DOI: https://doi.org/10.1007/s00605-022-01778-y